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I Introduction to Higher Mathematical Operations 

I.1 Introduction 

This chapter seems to deal with pure formalistic things but understanding it better and 

better it leads to a wonderful harmony and a network of inner relations. Imagine what 

numbers for us were without the operations that make us the numbers connected to each other. 

To make this better understandable let me tell you a very old story that is well known. 

Once the old Greek sage Pythagoras was asked: What is the essence of friendship? His answer 

was: Two people are real friends if there relation is like the relation of the numbers 220 and 

284. 

Can you understand this answer? It may become clearer if you look at the factors (or 

divisors) of the two numbers. 220 has– beside the number itself - the factors 1, 2, 4, 5, 10, 11, 

20, 22, 44, 55, 110.  

284 has the factors 1, 2, 4, 71, 142. The sum of the factors of a number – except the 

number itself – is called the content of that number. We can say that the number rules its 

factors. They are embraced by the number. Now, when we add up the factors of 220 we get 

284, and when we add up the factors of 284 we get 220! Each number equals the content of 

the other number. Isn’t that friendship? What is not friendship? E.g. if a person says: I am 

such a nice person, everybody loves me, I have so many friends. Actually the person loves to 

be loved and mostly she loves herself. Real friends have as the content of their souls the other 

person. They are interested in the other. They want to know the thoughts, feelings, and 

intentions of them. They love to talk to each other, to do things together, and they can stand 

the different opinions, the different feelings, behaviors, and intentions. He as a total becomes 

the content of my soul. 

Didn’t give Pythagoras a wonderful sage answer? We can understand it if we relate 



 Booklet VII – Higher Operations VII-2 

 2 

numbers to each other. Factors of a number are related to it by multiplication or division; the 

content can be calculated if we know what a sum is, if we can add. 

In the following chapter we try to explain the wonderful organism of the nine fundamental 

operations that make the kingdom of numbers so rich. 

I.2 Inner connections among the operations 

It was Rudolf Steiner, the leader of the first Waldorf school, who suggested that the higher 

mathematical operations be allowed to flow (develop?) from the lower operations in a certain 

way.  As a suggestion, this is presented here in more detail, whereby we will repeat some 

things in order to make the correlation.
62

   

I.1.1 From the Sum to the Product (From Adding to Multiplying) 

First, we will look at normal addition of numbers that lead to sums in the familiar way.  

Here are some examples: 

5 = 3 + 2 or 7 = 3 + 4 or 2 = 1 + 1 

There are also sums that contain more than two summands: 

12 = 3 + 4 + 5 or 20 = 1 + 2 + 3 + 4 + 4 + 4 + 3 + 2 + 1 or  

18 = 4 + 3 + 4 + 3 + 4 

Among sums there are those that have only the same summands, like these, for example: 

6

12=2+2+2+2+2+2   or  
4

333312    or  

3

12= 4+4+4 . 

In such cases we count the summands and create a product.  In the first example we have: 

12 = 6 · 2; in the second 12 = 4 · 3; and in the third 12 = 3 · 4. 

The counted summands that are always the same are called multiplicands; the counted number 

is the multiplier.  It tells us how often the same summand occurs.   

What has been presented by example can be generally stated as follows: 

Simple, normal sums have two terms (summands): 

S1 = a + b 

But there are also sums that have multiple terms: 

S2 = a + b + c + … 

Among the sums with multiple terms are those in which all the summands are the same.  

For example, if there are two equal summands as in: 


2

3 aa  S  , 

We then count the summands and write: 

S3 = 2 · a 

If the sum has three terms and they are all the same, we have: 

                                                 
62

 See Rudolf Steiner, Erziehungskunst.  Seminarbesprechungen und Lehrplanvortraege, Complete Works 295, 

14
th

 Seminarbesprechung.  In the book Der Anfangsunterricht in der Mathematik an Waldorfschulen, the 

connection between the mathematical operations is described from a somewhat different viewpoint.  For a 

systematic overview, it is recommended that the teacher have a clear understanding of this connection.   
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
3

4 aaaS   

Written as a product it would be: 

S4 = 3 · a 

If we have an undetermined amount n of equal summands a: 

n

S a a a a ...     … (n summands)  

Then we would write: 

S = n · a 

We have now very generally described (in terms of comprehension) the transition from 

addition to multiplication.  We could carry out a corresponding process – on the blackboard, if 

possible – by starting with the product instead of the sum.  With that we come to the higher 

operation of raising numbers to a given power. 

I.1.2 From the Product to the Power (From Multiplying to Raising to a Given Power) 

First, we will look at normal multiplication of numbers that result in products.  Here are 

some examples:  

6 = 3 · 2 or 12 = 3 · 4 or 2 = 2 · 1 

There are products that contain more than two factors: 

12 = 2 · 3 · 2 or 20 = 2 · 5 · 2 or 720 = 2 · 3 · 4 · 5 · 6 

Among products there are those that have only the same factors, like these, for example: 

  
6

22222264      or also   
4

333381     or   
2

6636   

In such cases we count the factors and create a power.  The counted factors that are always 

the same is referred to as the base number.  The number of factors counted is called the 

exponent.  It tells us how often the same factor occurs.  For a reason that will soon be 

explained, we write the base number in the normal position and the exponent is written to the 

right of the base number and raised.  Our three examples from above would look like this: 

64 = 2
6
, 81 = 3

4
, and 36 = 6

2 

For the time being, and different than with multiplication and addition, here we are only 

dealing with pure numbers.
63

   

There is a sensible reason as to why the base number and the exponent are not written on 

the same level:  If we compare 2
3
 and 3

2
, we see that the two powers do not have the same 

value: 

2
3
 = 8 but 3

2
 = 9 or  

3
4
 = 81 but 4

3
 = 64 

In general, the base number and the exponent may not be exchanged.  That is why they are 

written on different levels.
64

   

                                                 
63

 It should be remembered that we have already earlier, in the third grade, used the shortened way of writing the 

second and third powers.  (This volume is not yet published.) 
64

 This form originated with R. Descartes and has achieved acceptance.  He did not give a reason for choosing 

this form.  See J. Tropfke, Geschichte der Elementarmathematik, 4
th

 Edition, Volume 1, Arithmetik und 
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What has been presented by example can be generally stated as follows: 

Simple, normal products have two factors: 

P1 = a · b 

But there are also products that have multiple factors: 

P2 = a · b · c… 

Among the products that have multiple factors there are those in which all the factors are 

the same.  If, for instance, there are two equal factors: 


2

3 aaP   

We then count the factors and write: 

P3 = a
2 
 

If a product has three equal factors, we write: 


3

4 aaaP   

Written as a power, it would look like this: 

P4 = a
3 
 

If we have an undetermined number n of equal factors a: 

n

P a a a a ... a       

We write it like this: 

P = a
n 

We have now very generally described (in terms of comprehension) the transition from 

multiplying to raising to a given power. 

Up to this point, an exponent has been one of the natural numbers 2, 3, 4,…  Now, we will 

introduce:  a
1
 = a.  Later, we will see that one can always look at a

0
 as 1 (for a ≠ 0).  In the 

upper classes negative numbers and fractions will also occur as powers.   

Practice 55 

1.  Re-create the table of first powers from page 112 and, optionally, expand it. 

2.  Represent the numbers 64, 128, 256, 6,561 and 10,000 powers in as many different ways 

as possible.   

3.  Look for numbers between 0 and 30 that can be either sums or differences of two square 

numbers.  Are there also square numbers among them?  Examples:  1 = 0
2
 + 1

2
, 2 = 1

2
 + 1

2
, 3 

= 2
2
 – 1

2
, 4 = 0

2
 + 2

2
, 5 = 1

2
 + 2

2
    

4.  Look for numbers between 0 and 30 that can be either sums or differences of cubic 

numbers.  Are there also cubic numbers among them? 

5.  Powers of the number ten have special names.  We call 10
1
 ten, 10

2
 hundred, 10

3
 thousand, 

10
6
 million, 10

9
, billion, 10

12
 trillion, 10

15
 quadrillion, 10

18
 quintillion, 10

21
 sextillion, etc.  In 

order to better read the numbers one puts commas after every three digits.  Read the numbers 

111,222,333; 444,333,222,111; 9,876,543,210; 12,345,678,987,654,321. 

                                                                                                                                                         
Algebra (1980), Page 227.  The fact that other forms have become common in not important here. 
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6.  For a better overview, or for other reasons, one likes to represent large numbers as powers 

of ten.  For example, 912436752 = 9 · 10
8
, or, more exactly, 9.1 · 10

8
.  Write the numbers in 

the previous problem as powers of 10 with two reliably calculated digits.   

Solutions: 

1.  Table found on page 112. 

2. 64 = 64
1
 = 8

2
 = 4

3
 = 2

6
; 128 = 2

7
; 256 = 4

4
 = 2

8
; 6561 = 81

2
 = 9

4
 = 3

8
; 10.000 = 100

2
 = 10

4
. 

3. 7 = 4
2
 – 3

2
; 8 = 2

2
 + 2

2
 = 2

3
; 9 = 0

2
 + 3

2
 = 5

2
 – 4

2
; 10 = 1

2
 + 3

2
; 11 = 6

2
 – 5

2
; 13 = 2

2
 + 3

2
 = 

7
2
 – 6

2
; 15 = 8

2
 – 7

2
; 16 = 0

2
 + 4

2
; 17 = 1

2
 + 4

2
 = 9

2
 – 8

2
; 18 = 3

2
 + 3

2
; 19 = 10

2 
– 9

2
; 20 = 2

2
 + 

4
2
 = 6

2
 - 4

2
; 21 = 11

2
 – 10

2
; 23 = 12

2
 – 11

2
; 24 = 5

2
 – 1

2
; 25 = 3

2
 + 4

2
 = 13

2
 – 12

2
; 26 = 5

2
 + 1

2
; 

27 = 14
2
 – 13

2
 = 3

3
; 29 = 15

2
 – 14

2
. 

4.  With only two terms (not using zero) one gets 7 = 23 13;  9 = 32= 23+ 13;  19 = 33 23; 

26 = 33 13; 28 = 33+ 13.  If there are more than two numbers permitted there are many 

further possibilities, such as: : 0
3
 = 6

3
  5

3
 4

3
  3

3
; 3

3
 = 6

3
  5

3
  4

3
 = 5

3
  4

3
  3

3
  2

3
 + 1

3
, 

and so on.   

5.  (Written in short form:)  111 million 222 thousand 333; 444 billion 333 million 222 

thousand 111; 9 billion 876 million 543 thousand 210; 12 quadrillion 345 trillion 678 billion 

987 million 654 thousand 321. 

6. 1,1∙10
8
; 4,4∙10

11
; 9,9∙10

9
; 1,2∙10

16
. 

I.3 The Rules of Number Powers 

From the determination that we understand the power P = a
n   

to be the product 

n

a a a a ... a     , we immediately have the first rule of  number powers: 

First rule of number powers: 

a
n
 · a

m
 = a

n+m 

In words: Number powers with the same base number, a, can be multiplied by raising a to the 

power of the sum of the exponents. 

Second rule of number powers:   

n

m

n ma
a

a   , whereby we assume:  n > m. 

In words:  Number powers with the same base number, a, can be divided by raising a to 

the power of the difference of the exponents (nominator exponent – denominator 

exponent). 

Third rule of number powers: 

a
n
 · b

n
 = (a · b)

n
   

In words:  Number powers with the same base number can be multiplied by raising the 

product of the base numbers to the power of the combined exponents. 

Fourth rule of number powers: 

 
n

n

n
a a

bb
  

In words:  Number powers with the same exponent n can be divided by raising the 

quotients of the base numbers to the power of the combined exponents, n. 

Please note:  The power of a sum or a difference is generally not the same as the sum or 

difference of the powers of single summands: 
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(a + b)
n
 ≠ a

n
 + b

n
 or (a – b)

n
 ≠ a

n
 - b

n
  

Examples: 

(2 + 3)
2
 = 5

2
 = 25  2

2
 + 3

2
 = 4 + 9 = 13  oder  

(5  3)
2
 = 2

2
 = 4  5

2
  3

2
 = 25  9 = 16 

One can draw a few important conclusions from these rules of number powers, which will 

be expanded upon in the upper classes: 

What is a
1
?  If the rules of number powers are to apply without limitations, then according 

to the third rule one can say: 

31 3 2
2

0a a a a
a aa

a a a, a  


     . 

In words:  The first power of all numbers a ≠ 0 is a.  

What is a
0
?  Similarly, we can say that a

0
 is a

2-2
.  With that, we have: 

20 2 2
2

1a a a
a aa

a a  


    . 

In words:  The zero power of all numbers a (a ≠ 0) is 1. 

Further:  All powers of 1 are 1:  1
n
 = 1 for all numbers n. 

Practice 56 

1. Calculate: : 2
1
; 1

2
; 2

3
; 3

2
; 2

4
; 4

2
; 2

5
; 5

2
; 2

6
; 6

2
.  

2. 2 Write the numbers 64, 81, and 1024 as powers in as many different ways as possible. 

3. With what should 5
12

 be multiplied in order to get 10
12

? 

4. Calculate:           
3 2 1 04

3 51 2 4
2 3 4 5 6

; ; ; ; . 

5. Calculate:  
3 2 3 2 5 248 15 7 912
3 2 4 3 2 2 54 5 6 21 27

a a

a a
; ; ; ; ; ; .  

Solutions:   

1. 2; 1; 8; 9; 16; 16 (!); 32; 25; 64; 36. 

2. 64
1
 = 8

2
 = 4

3
 = 2

6
; 81

1
 = 9

2
 = 3

4
; 1024

1
 = 32

2
 = 4

5
 = 2

10
. 

3. 2
12

, since 5
12

 ∙ 2
12

 = (5 ∙ 2)
12

 = 10
12

.  

4.          
3 2 1 04

8 3 9 51 1 2 4 4
2 16 3 27 4 16 5 5 6

1; ; ; ; .      

5.  
33 38 8

3 44
2 8;    correspondingly: 

2 42 415 12
2 45 6

3 9 2 16; ;     

6.  
33 2 5 237 91 1 1 1

3 3 27 2 9 2 5 321 27

a a

a a a
; ; a ; .      

I.4 Inversions of Power Functions 

If we are given a power equation of p
a
 = r then we can use two of the three numbers to 

calculate the third.  If we calculate the r then we have to raise the number p to the power of a.  

However, if we ask:  What number must be the exponent of 5 in order to get 125 then we are 

calculating to find the exponent a.  Naturally, the answer is a = 3 since 5
3
 = 125.  A calculation 
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that is asking for the exponent when the base number and the result are given is called finding 

the logarithm.  The shorter form of such a word problem is written like this: 

log5 125 = 3 

One reads it like this:  The logarithm of 125 to base 5 is equal to 3.  The expression log5 

125 and, accordingly, the number 3, is called the logarithm of 125 to base 5.  In general, one 

describes the expression logp r as the logarithm of r to base p. 

One can also calculate to find p in p
a
 = r.  Such a problem would be:  What number p must 

I raise to the power of 3 in order to get 125?  The answer is p = 5 since 5
3
 = 125.  The 

calculation that asks for a base number when the exponent and the result are given is called 

finding the root or root extraction.  The word problem written in short form looks like this: 

3 125 5  

One reads it like this: The cubic root of 125 is 5. 

If one turns around the power equation p
a
 = r and asks for the base p, then p is the a-th root 

of r and is written as p = a√r.  Left of the root symbol one writes the number that tells us the 

number of the root to be found.  Underneath the root symbol is the number from which the 

root is determined.  The root exponent is a, and r is the radicand.
65  

In our example 3 is the 

root exponent and 125 is the radicand. 

Questions relating to the logarithms of both of the inversion operations are: 

-  What is the logarithm of r to base p? 

-  The whole r is given and the base number p.  How many factors of p will give r? 

-  The p is given.  The r should be an exponent of p.  How often is p used as a factor? 

Questions relating to the radicand: 

-  The whole r should be broken down into a product of a, with equal factors.  How large is 

the single factor p? 

-  What amount is p, raised to the power of a, in order to get the total amount of r? 

Other formulations are possible. 

With the above we have become familiar with a few rules of number powers.  There are 

also rules for root extractions and logarithms.  Let us look at a rule for root extraction:  What 

is the root of the product a · b?  Let us look at a few examples:  What is the square root of 16 · 

25?  16 · 25 = 400 and √400 = 20.  On the other hand, √16 = 4 and √25 = 5.  It is, however, 20 

= 4 · 5.  Therefore, √16 · 25 = √16 · √25.  Is it generally allowed to find the root of a product 

using each individual factor?  Let us look at some further examples:  6 = √36 = √4 · 9; √4 · √9 

= 2 · 3 = 6.  Therefore, √4 · 9 = √4 · √9.  Similarly, √25 · 9 = √25 · √9, as can be easily 

checked.   

In order to really understand that
 n

√a · b = 
n
√a ·

 n
√b , we must only bring the clear meaning 

of the root into our consciousness again:  With
 n

√r it is understood to be the number that is 

raised to the power of n to get r.  Therefore, in our case, it is:  (
n
√a · b)

n
 = a · b.  On the other 

hand, according to the third rule of powers:  (
n
√a · 

n
√b)

n
 = (

n
√a)

n
 · (

n
√b)

n
 = a · b.  Therefore, 

this applies: 

First Rule of Roots: 

n
√a · b = 

n
√a ·

 n
√b  

In words:  From a product, the root may be extracted from the factors; or, conversely:  Two 

                                                 
65

 For information about the origination of the root symbol compare J. Tropfke, Geschichte der 

Elementarmathematik, Volume I, Berlin 
4
1980.  See also Louis Locher-Ernst, Arithmetik und Algebra, 

Dornach 
2
1984, Page 234 and following pages. 
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roots with the same root exponents can be multiplied together by multiplying the numbers 

under the roots and extracting the root from the product.   

Please note:  One may never extract the root of a sum using its individual terms.  

Unfortunately, this is one of the most common mistakes when dealing with roots and should 

be often emphasized.  An example immediately shows the inequality: 

9 16 25 5 9 16 3 4 7 5; .         

Practice 57 

The first exercises for powers, logarithms, and root extraction should remain totally in the 

area of smaller numbers as has already become familiar during mental arithmetic practice.  

There are many varied oral and written exercises of the following kind that can be done:  

What is the exponent of 4 to get 64?   

In written form this question would look like this:  4
?
 = 64.  Then, next to it, one should 

write the new form:? = log4 64 and the solution log4 64 = 3, since 4
3
 = 64.   

In the same way, root extraction should be carefully and repeatedly practiced in both oral 

and written form.   

Problems in which the operations must be found are very stimulating.   

Example:  Using different operations, connect the numbers 4, 5, and 625. 

Solution:  5
4
 = 625, log5125 = 4, 

4
√625 = 5.  

1.  Using as many different operations as possible, correlate the given numbers. 

a) 2, 3, 9 b) 8, 2, 64 c) 10, 3, 1000 

d) 15, 10, 150 e) 120, 4, 30 f) 120, 4, 116 

g) 2, 2, 4 h) 1, 1, 1 i) 1, 0, 0 

j) 1, 1, 0 k) 0, 0, 0 l) 10, 10, 1 

Solutions: 

a) 3
2
 = 9; 2

39 3 9 2; log  ; b)  

b) 2 2
88 64 64 8 64 2; ; log ;     

c) c) 3 3
1010 1000 1000 10 1000 3; ; log ;    

d) 15 ∙ 10 = 150; 150 : 10 = 15; 150 : 15 = 10;  

e) 120 : 4 = 30; 120 : 30 = 4; 4 ∙ 30 = 120;  

f) 120 – 4 = 116; 120 – 116 = 4; 116 + 4 = 120; 

g) 2 + 2 = 4; 2 ∙ 2 = 4; 4 : 2 = 2; 4 – 2 = 2; 

h) 1 ∙ 1 = 1; 1 : 1 = 1; 1
1
 = 1; ( 11 1 ); 

i) 1 ∙ 0 = 0; 0 : 1 = 0;  

j) 1 – 1 = 0; 1
0
 = 1; 

k) 0 + 0 = 0; 0 – 0 = 0; 0 ∙ 0 = 0; 

l) 10 : 10 = 1; 1 ∙ 10 = 10; 10 : 10 = 1. 

 

The following group of problems should be done in a similar way. 

2.  Using one operation, correlate the given three numbers in such a way that the third 

number becomes the result. 
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a) 81, 3→4 b) 25, 23→2 c) 25, 25→1 

d) 125, 5→25 e) 125, 5→3 f) 125, 3→5 

g) 125, 5→625 h) 125, 3→128 i) 64, 2→32 

j) 64, 4→3 k) 64, 3→4 l) 64, 8→8 

m) 8, 2→64 n) 64, 2→8 o) 64, 2→66 

 

Solutions: 

a) 3 81 4log ;  b) 25 – 23 = 2; c) 25 : 25 = 1; d) 125 : 5 = 25; e) 5log 125 = 3; f) 3125 5 ; g) 

125 ∙ 5 = 625; h) 125 + 3 = 128; i) 64 : 2 = 32; j) 4log 64 = 3; k) 3 64 4 ; l) 64 : 8 = 8; m) 8
2
 = 

64; n) 2 64 8 ; o) 64 + 2 = 66. 

I.5 More Correlations between Mathematical Operations 

Just as we transitioned from addition into multiplication and further into powers, in the 

same way, we can use subtraction to lead into division and further into root extraction.  If this 

is gently done, then it is more transparent and understandable for the students.  It is essential 

that the correlation between mathematical operations is apparent and that root extraction is not 

limited to finding the square root, but rather is presented as a real mathematical operation 

using any root exponent.  In my own 7
th

 grade classes, I repeatedly went over all nine 

calculation types as they are presented in the volume Der Anfangsunterricht in der 

Mathematik an Waldorfschulen.  In doing so, the students were exposed to logarithms at the 

same time as root extractions and powers.  Even though these operations are not yet covered 

in any great detail, looking at logarithms at the same time as powers and roots is very relevant 

and does not cause any real difficulty if it is initially limited to whole-number relationships. 

From Subtraction to Division 

If we have two different (natural) numbers, we can subtract the smaller from the larger 

usually many times over, but at least once, until the remainder is either equal to zero or 

between zero and the smaller number.  For example, think of a length that is 12 meters long.  

We can subtract a length of 5m two times from it.  The remainder is 2m.  If one can subtract a 

length multiple times without a remainder then we say that we have divided the length into 

equal pieces.  For example, if we repeatedly subtract a 3m length from a 12m length, then 

after four subtractions we have no remainder.  We say that we have divided a 12m length into 

4 equal parts of 3m each. 

A problem that asks to divide 18m into 3 equal parts means that we need to find the 

number that can be subtracted three times with no remainder.  This problem can be written as 

follows: 

18m - =
3 - =

- =  0 m





 

The original length of 18m is given, as well as the three-time subtraction and the result of 

0m.  What number can be subtracted so that the result really is 0? 
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Of course, we know that 6m is the correct answer.  But if we calculated the problem using 

5, for example, we would get: 

18m - 5m = 13m  

13m - 5m =   8m 

 8m - 5m =   3m > 0m 

Since the result is greater than 0m, the subtrahend (5m) is too small.  If we choose a 

subtrahend that is too large, such as 7m, for instance, then the calculation leads into the 

negative: 

18m - 7m = 11m 

11m - 7m =   4m 

 4m - 7m =  -3m < 0m 

The end result is where we can tell if the subtrahend was too small or too large. 

When the correct subtrahend is chosen (6m) we get: 

18m - 6m = 12m  

12m - 6m =   6m 

 6m - 6m =   0m 

This calculation can also be written as follows, whereby we always have the beginning 

amount of 18m in view: 

18m - 6m = 12m 

18m - 6m - 6m =   6m 

18m - 6m - 6m - 6m =   0m 

This is another way of writing it: 

18m - 1  6m = 12m 

18m - 2  6m =   6m 

18m - 3  6m =   0m  

The last equation shows that we have divided 18m into three equal parts of 6m each.  In 

other words, we have divided 18 by 3.   

m
m

6
3

18
  

When dividing a number a into n equal parts, then one must find the number b that can be 

subtracted from a n-times with a remainder of 0.  We can write this as follows, whereby it is 

understood that r1, r2, … is the remainder: 

1

2

a - 1 b = r
a - 2 b = r

n
.................
a - n b = 0 


 

 

 

If a – n · b = 0, it means that: 

a
= b

n
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Here, a series of exercises can be given in which the division is done as in the above 

examples; either in the first or second form.   

Practice 58 

1.  Calculate by repeated subtraction: 

a)  51 : 3; b)   76 : 4; c)  3,6 : 3; d)  4,2 : 7; e)  448 : 4; f)  14,4 : 3. 

Solution: 

1.  a) 51 : 3 = 17, since  51 – 17 = 34 

 43 – 17 = 17 

 17 – 17 = 0 

b) 76 : 4 = 19, since 76 – 19 = 57 

 57 – 19 = 38 

 38 – 19 = 19 

 19 – 19 = 0 

c) 3,6 : 3 = 1,2, since 3,6 – 1,2 = 2,4 

 2,4 – 1,2 = 1,2 

 1,2 – 1,2 = 0 

d) 4,2 : 7 = 0,6, since 4,2 – 0,6 = 3,6 

 3,6 – 0,6 = 3,0 

 3,0 – 0,6 = 2,4 

 2,4 – 0,6 = 1,8 

 1,8 – 0,6 = 1,2 

 1,2 – 0,6 = 0,6 

 0,6 – 0,6 = 0 

e) 448 : 4 = 112, since 448 – 112 = 336 

 336 – 112 = 224 

 224 – 112 = 112 

 112 – 112 = 0 

f) 14,4 : 3 = 4,8, since 14,4 – 4,8 = 9,6 

 9,6 – 4,8 = 4,8 

 4,8 – 4,8 = 6 

Other written forms are possible, such as: 

 e) 3,6 – 1,2 = 2,4 

 3,6 – 2 ∙ 1,2 = 1,2 

 3,6 – 3 ∙ 1,2 = 0 

 

Remarks: 

Bringing division back through a process of repeated subtraction could obscure the 

autonomy of division.  However, in exchange, a few simple exercises can keep one’s 

awareness sharp: 

2.  There is a given distance of several meters in length.  Divide this distance with 6 (5, 4…) 

equal steps.  Since one is only estimating the size of the steps when using small numbers, the 

distance must not be measured step for step, but rather the whole distance will be seen as an 

impressed structure – similar to the following experiment. 

3.  A relatively long rope is held by the teacher and one student or by two students.  One of 

them begins to swing the rope so that knots begin to form at regular intervals in the rope.  The 

entire length of the rope is thus divided; a rhythm dividing. 
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From Dividing to Root Extraction 

In the introduction to powers we used the example of 3
4
 = 3 · 3 · 3 · 3 = 81.  From 81 how 

can we now get back to the root from which it was produced in four steps?
66

  If a number is 

multiplied when raising to a given power, then on the way back it must be divided.   

Finding the 4
th

 root of 81 means finding the number by which 81 is divided four times in 

order to get the result of 1.  

The divisions that were carried out through multiple subtractions resulted in a zero at the 

end.  But multiple divisions done to find the root must result in 1 at the end.  The one is to 

multiplication and division what the zero is to addition and subtraction.  They do not change 

the value of a number.   

If one does the repeated divisions in the same order as the subtractions in the previous 

problem
67

, one gets: 

81 : =
: =

4
: =
: =  1







 

We know the beginning – the number 81 as radicand -, the number of divisions – the root 

exponent 4 -, and the end result of 1.  What number is the divisor? 

Let us first choose a number that is too small.  The number 2, for example, would give us 

this with four divisions:
68

   

81 : 2 · 40 

40 : 2 = 20 

20 : 2 = 10 

10 : 2 =   5 > 1 

 

Since after four divisions one number appeared that is greater than 1, the divisor, that is, 

the assumed root value, must be too small.  If we check using the number 4 we get: 

81 : 4  20 

20 : 4 =  5 
1

36
  5 : 4 =  1,25 

  1,25 : 4   0,3 < 1  

 

Since after four divisions the result is less than 1, the assumed root value must be too 

large. If we correctly choose the number 3 as the divisor we get: 

81 : 3 = 27 

27 : 3 =   9 

  9 : 3 =   3 

  3 : 3 =   1 

 

That is:  
4
√81 = 3 

In this way a series of whole-number roots can be easily calculated.  The following 

                                                 
66

 As has already been stated, one can also think of 81 as coming from four multiplications: 81 = 1 · 3 · 3 · 3 · 3. 
67

 It is important here to do parallel presentations on the blackboard of division through subtraction and root 

extraction through division.  The students will understand the process because of the parallel presentation. 
68

 We are only roughly calculating.  The students should already be familiar with calculating with decimal 

fractions.  Of course, one must keep in mind that approximate calculations are not always reliable, especially 

when miniscule differences play an important role. 
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exercises are presented as examples. 

Practice 59 

Calculate: 

3 5 3 10 4 3 6 32 23 8, 64 , 32, 125, 1024, 625, 64 , 64 , 64 , 49 , 343  

Solutions:  2; 4; 2; 5; 2; 5; 8; 4; 2; 7; 7. 

In the next step root extraction can be brought back to division: 

If the square root of the number a is to be found, then the number b must be found that in 

two steps of division of a results in 1.  In the following, q1 and q2 designate the successive 

quotients that are the result of the divisions. 

 1

1

a : b = q
2

q : b = 1
 

On the last line we see that in this case it must be that q1 = b.  We could also write: 

a : b = b
2

b : b = 1
 or     2

       a : b =a:b
2

(a:b) : b = a : b = 1
 

In the last form it is apparent that a = b
2
.  Therefore, b is 

2
√a. 

Important tip:  Since the square root appears especially often in mathematics, it has been 

agreed that in this case the root exponent must not be written.  If one finds that a root is given 

without a root exponent it means that it is a square root:  √a = 
2
√a.  One must pay careful 

attention when using calculators. 

If the cubic root of a is to be found, then we must find a b that results in the number 1 after 

three steps of divisions: 

1

 1 2

2

a : b = q
3 q : b = q

q : b = 1





 

This time it must be that q2 = b.  We could also write: 

1

1

a : b = q
3 q : b = b

b : b = 1





 

In the same way as the square root, we could also write: 

1

2

2 3

 a : b =  a : b
3 (a : b) : b = a : b

(a : b ) : b = a : b







 

From this we read:  b = 
3
√a 

If we are to find the nth root of a, then we must find a b that in n divisions of a results in 

the number 1:   

1

1 2

a:b = q
q :b = q

n
............

b:b = 1







 

With that we have led the process of root extraction back to division. 

When we learn to use indices as in the chapter on recursive arithmetic, we can also write it 
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like this: 

1

1 2

n-2 n-1

n-1

a : b = q
q : b = q

n .............................
q : b = q
q : b = 1







 

In order to have this:  qn-1 : b = 1, one must, again, have this:  qn-1 = b 

Just as with the square and cubic root, one can also write it like this: 

2

2 3

n-2 n-1

n-1 n

a : b = a : b
(a : b) : b = a : b
(a : b ):b=a : b

n
.............................

(a : b ) : b = a : b
(a : b ) : b = a : b  = 1









 

From this follows:  b =
 n
√a 

Bringing root extraction back to division can also be helpful to us in cases where we 

cannot exactly determine the root, but wish to estimate it.   

For example, one is trying to find the cubic root of 100, we do the calculation as follows: 

100 : =
3 : =

: = 1





 

If we choose the number 4 as the assumed root value, we get this: 

100 : 4 = 25
3 25 : 4 = 6,25

6,25 : 4 > 1





 

The number 4 is too small.  If we choose the number 5, we get: 

100 : 5 = 20
3 20 : 5 = 4

4 : 5 < 1





 

The number 5 is too large.  From these two calculations we learn something:  When 

writing in decimal form the root must be written with a 4 in front of the decimal point.   

If we now check the decimal fraction values, we can always determine if they are too large 

or too small.  In our case, 4.6 results in: 

100 : 4,6 21,7
21,7 : 4,6 4,7
4,7 : 4,6 > 1


  

4.6 is too small.  When we check 4.7 we get: 

100 : 4,7 21,3
21,3 : 4,7 4,5
4,5 : 4,7 < 1


  

4.7 is too large.  Coming closer to the root value requires that a 6 come after the decimal 

point: 

3
√100 = 4.6 
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In the next step one finds: 

100 : 4,64 21,55
21,55 : 4,64 4,645
4,645 : 4,64 > 1


  

4.64 is too small, so one must look at more numbers after the decimal point to find the 

correct number.  If we check 4.65 we get: 

100 : 4,65 21,505
21,505 : 4,65 4,625

4,625 : 4,65 < 1


  

4.65 is too large.  The next number to be chosen is 4: 

 
3
√100 = 4.64 

If we check this answer by calculating the exponent we get: 

4.64
3 

= 99.897344 

In the third power there remains a deficit of about 1/10
th

. 

In principle, we could continue dividing in this way to get closer and closer to the root 

value.  It is also possible, with the help of a simple calculator that has no root function, to 

determine any root exactly up to a few numbers after the decimal point.   

In general, can we ever exactly determine any root?   

Now, the question arises about irrational numbers.  One can explain to the students most 

root values can never be completely and exactly represented by decimal fractions or normal 

fractions.  Perhaps the easiest example of this is 
2
√2.  The number two must be divided two 

times by what number d in order to get the number 1?   

2 : d = d 

d : d = 1 

The students can try for a long time.  In the end, one can give them the answer: 

2√2 = 1.414213562 

If one multiplies this approximate value with itself, one still does not really get the number 

2 as the result.  Is it even possible to multiply a number with a finite number of decimal places 

with itself and get a whole number as a result?  After some thought, this will appear to the 

students to be very unlikely. 

The strict proof that 
2
√2 cannot be precisely solved through a decimal fraction with a finite 

number of decimal places or through a normal fraction, is too challenging for most students.  

This is brought up in a later class.  For now, it can only be reported upon.  Amounts that are 

represented by 
2
√2, for example, but do not result in a whole number or a fraction, are called 

irrational.  The Greeks were deeply shaken by the discovery of the irrationals.  The following 

has been handed down to us from Euclid:  “There is a story that comes from the followers of 

Pythagoras which says that the first one to divulge the theory (of irrationals) in public was a 

victim of a shipwreck, and perhaps they wanted to point out with this story that everything 

irrational in the universe should remain as something “unspeakable and formless”, and that 

when someone and their soul meets such a form of life, and makes it accessible and public, he 

is sucked into the ocean of becoming, and, from then on, will never experience the lapping of 

quiet currents.”
69

   

                                                 
69

 Quoted from Louis Locher-Ernst, Raum und Gegenraum, Dornach 
2
1970, Page 212.  A worthwhile look at the 

irrationality of √2 is found in Vom Denken in Begriffen. Mathematick als Experiment des reinen Denkens by 
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Practice 60 

Between what successive whole numbers are the given root values? 

1. 10; 20; 30; 50; 70; 80; 90; 200; 500; 1000; 120,83; 930,2; 5,678. 

2. 3 3 3 3 3 310; 20; 30; 90; 700; 10000.  

3. 4 4 4 4 4 410; 20; 30; 100; 300; 2000.  

 

Solutions: 

1. 3 10 4 ; 4 20 5 ; 5 30 6 ; 7 50 8 ; 8 70 9;           

8 80 9 ;9 90 10; 14 200 15 ; 22 500 23 ;         

31 1000 32 ; 10 120,83 11 ; 30 930,2 31; 2 5,678 3.         

2. 3 3 3 3 3 32 10 3; 2 20 3; 3 30 4; 4 90 5; 8 700 9; 10000 100.            

3. 4 4 4 4 41 10 2; 2 20 3; 3 100 4; 4 300 5; 6 2000 7.           

II Calculating a Square Root 

I.6 (Should be II.6 etc.) Preliminary Remarks 

In the following we will look at a long- known arithmetic method for determining a square 

root.  Being able to understand and use this method – one speaks of an algorithm – above all, 

has intrinsic educational value.  First, one looks at the interplay of the different operations, 

then an expedient way of estimating is applied, and finally, algorithms are an essential part of 

computer programs.  The objection that such methods are superfluous since the invention of 

computers because they can compute every root, not just square roots, with enough accuracy, 

is correct in terms of practical, professional use.  To understand how such algorithms work is, 

in general, not really explained later.  In any case, most students will enjoy learning how they 

work and how they are used.   

Rudolf Steiner asked a mathematics teacher at the opening of a 9
th

 grade class on 

September 22,  1920, how he had gone about teaching powers and root extraction in the 

previous 8
th

 grade; especially how he had taught squaring and cubing of certain numbers, as 

well as finding the roots, including cubic roots; and he said:  “With these things it does not 

matter so much that one does them in the same way as they will be used later, but rather that 

certain forms of thinking are practiced.  The thinking forms that one uses with cubing, 

squaring, and root extraction, this singularity, that is, in a certain way, abstracted from the 

concreteness of numbers, and then newly grouping the numbers in other ways, leads so deeply 

into the structure of numbers, and is so formative for thinking, that one has to do it.”
70

   

Those who really delve into the individual steps of the method will understand Rudolf 

Steiner’s viewpoint.   

However, I am not of the opinion that everything presented here must be taught.  Every 

teacher will best be able to judge for themselves where the limits will be placed.  It appears to 

me that the first levels of root algorithms can be directly taught in the classroom.  However, 

an important question is just how far one can go in explaining this arithmetic method to the 

students.  The formative aspect of which Rudolf Steiner was speaking does not lie in 

mastering a skill, but rather in the special application of the binomial formula.   

                                                                                                                                                         
Alexander Israel Wittenberg, Basel and Stuttgart, 1957.  

70
 Rudolf Steiner, Konferenzen mit den Lehrern der Freien Waldorfschulen 1919 to 1924, volume I, Complete 

Works 300a, Page 221.  See also:  Detlev Hardorp, Erziehung zur Knechtschaft – oder zur Freiheit.  Zur 

menschenbildenden Wirkung des Mathematikunterrichts am Beispiel des Wurzelziehens.  In:  

Erziehungskunst, Oct. 1996. 



 Booklet VII – Higher Operations VII-17 

 17 

My question is this:  To what extent can the inner composition of root algorithms be made 

so understandable for the most capable students that the entire class becomes familiar with 

them?   

It is an illusion to think that every student will be able to follow without any problem.  But, 

in every class, the teaching should rightly occur with different levels of ability in mind.  Just 

one well-presented and developed thought from the group of most able students is significant 

for the whole class and creates trust in the use of algorithms. Experiencing such discussions 

has great significance for later intellectual development of those students who are weaker in 

mathematics.  They have a stimulating effect on one’s own development.  I often experienced 

this while working with colleagues who had had a hard time with mathematics as children.  

However, later, because they experienced it with their students, understanding was easily 

gained.   

Preparations 

With the previous calculations of an exact or approximate root value, it remained 

unsatisfying that the search was so unsystematic.  For this reason, mathematicians have 

thought long and hard about the most effective way of finding a root value.  There have been 

a series of various methods discovered, a few of which will be discussed in the following 

pages.  It is important to have knowledge of basic forms of arithmetic, the first square 

numbers, and the first binomial formula that we have already gone over.  It has to do with 

developing a method that will allow the calculation of every square root to the desired 

accuracy for practical use, and not just the easy cases. 

II Necessary Tools 

1.  The essential basis for the method we want to develop is the first binomial formula 

(a + b)
2
 = (a + b) · (a + b) = a

2
 + 2ab + b

2 

In this way it is possible for products of equal sums on the left side (a + b) · (a + b) to be 

converted into a sum of products a
2
 + 2ab + b

 2. 

2.  If we compare the series of natural numbers with their squares, we find that with 

increasing numbers, the squares stand in increasing ratios to the base numbers. 1 and 1
2
 are 

still the same, but 2 is only half of 2
2
, and 100 is only 1% of its square.  n

2
 is n-times greater 

than n.   

From this we come to an interesting conclusion that will be useful to us.  We ask:  How is 

the square of a number a changed if we increase it a little (by the smaller number b) and go 

from a
2
 to a + b and  

(a + b)
2
?   

Example: 

First, let us start with:  a = b = 10 

(10 + 10)
2
 = 10

2
 + 2 · 10 · 10 + 10

2
 = 100 + 200 + 100 = 400 

Of course, a and b contribute equally to the result.  The mixed term 2ab is just as large as 

both squares together. 

Now, we increase a and correspondingly decrease b so that always a + b = 20.  We will get 

this series:  

(10 + 10)
2
= 100 + 200 + 100 = 400 

(11 + 9)
2
 = 121 + 198 +   81 = 400. 
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(12 + 8)
2
 = 144 + 192 +  64 = 400. 

(13 + 7)
2
 = 169 + 182 +   49 = 400. 

(14 + 6)
2
 = 196 + 168 +   36 = 400. 

(15 + 5)
2
 = 225 + 150 +   25 = 400. 

(16 + 4)
2
 = 256 + 128 +   16 = 400. 

(17 + 3)
2
 = 289 + 102 + 9 = 400. 

(18 + 2)
2
 = 324 +   72 + 4 = 400. 

(19 + 1)
2
 = 361 +   38 + 1 = 400. 

(20 + 0)
2
 = 400 + 0 + 0 = 400. 

 

One sees:  The three terms a
2
, 2ab, and b

2
 contribute very differently to the result 

depending upon their size.  If b is much less than a, one writes b « a.  In this case the change 

in a
2
 is mainly determined by the term 2ab.  b

2
 plays a subordinate role.  If one wishes to only 

estimate the increase in a square when there is a slight increase in the base number, then it is 

enough to take the binomial formula into consideration with a
2
 and the middle term 2ab: 

If b is much less than a (b « a), then 

(a + b)
2
 = a

2
 + 2ab. 

Admittedly:  The less the difference is between a and b, the larger will b
2
 be in proportion 

to a
2
, and must therefore be all the more quickly taken into consideration.  This ability to 

estimate will be of good service to us.   

III Calculating some Roots 

Example 1: 

In order to understand the following method of calculating a square root we will choose a 

problem that is easy to solve.  Let us assume we want to calculate √676, but we do not know 

the result immediately.  Let us forget for a moment that we know from the series of square 

numbers that: 

676 = 262, that is, √676 = 26. 

First, we will decide how many digits in the result go before the decimal point.  To do this, 

we turn everything around:  If there is one digit in front of the decimal point, then the square 

is one or two digits.  If there is a two-digit number, then the square has three or four digits, 

and so on.  Therefore, the root of a one or two digit number must have one digit, of a three or 

four digit number two digits, and so forth.  A table can be of help: 

x x
2 

1 .... 9,... 1 .... 99,... 

10 .... 99,... 100 .... 9999,... 

100 .... 999,... 10.000 .... 999999,... 

 

Since 676 is three digits, √676 must have two digits in front of the decimal.  First, we mark 

the number of digits in front of the decimal with points: 

√676 = . .  
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(That the points are actually not needed later is something we choose to forget for right 

now.) 

Now we will consider what the first digit (in the tens column) of the result must be.  We 

know that 20
2
 = 400 and 30

2
 = 900.  Because the number 676 lies between these numbers, the 

root will also be between 20 and 30.  In any case, the first digit must be 2.  20 is a first 

approximation of the root value we are trying to find, whereby we are certain that the 2 in the 

tens column is correct.  The number 20 is considered the a in the above binomial formula for 

estimations.  We now want to find a number b (which must be smaller than 10 since the first 

digit may not be changed), which will adjust a, since a
2
 still does not give the desired number 

676.   

What amount should be chosen for b so that:  

676 = (20 + b)
 2

? 

We square it out and get the following: 

676 = 400 + 40b + b
2
  

By subtracting 400 from both sides we get: 

276 = 40b + b
2
 = (40 + b) · b 

With this it is no easier to calculate b than it was before to calculate the root directly from 

676.  But remember that b is a little smaller than a and therefore, because of the said b
2
 in 

proportion to the middle digit 2ab = 40b, cannot play a very big role.  So, we take b
2
 out of 

consideration for a moment and estimate the amount of
 
b: 

276 = 40b 

Since we are, for the moment, only interested in the digit in the units’ column, we will 

estimate in whole numbers: 

B = 276 : 40 = 27 : 4 = 6 

Does this fulfill our condition? 

276 = 40b + b
2
 = (40 + b) · b       (*) 

If we insert b = 6 we get: 

(40 + b) · b = (40 + 6) · 6 = 240 + 36 = 276 

The condition (*) is fulfilled, and we have gained the correct result at the same time:  The 

necessary adjustment of a = 20 is b = 6, which is: 

√676 = a + b = 26 

We will calculate and check some further examples using the same method: 

Example 2: 

Find √961 

Again, the result will be a two digit number: 

√961 = .. 

The first digit of the result must be 3 since 961 lies between 900 = 30
2
 and 1600 = 40

2
.  We 

choose  

a = 30 as the first approximation of the root value.  

How do we get the correction b so that a + b is two correct digits? 

It should be: 
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(a + b)
2
 = (30 + b)

2
 = 961    or 900 + 60b + b

2
 = 961  

Or rather 

60 b + b
2
 = (60 + b) · b = 61 

Again, if we ignore b
2
 for a moment, we get the approximate correlation: 

60b = 61 

The possibilities for b are the numbers 0 or 1 since, considering the b
2
, we must always 

make it somewhat smaller.  If we put in b = 1, we get: 

(60 + b) · = (60 + 1) · 1 = 61 

b = 1 fulfills the required condition exactly and it is: 

√961 = a + b = 31 

Example 3: 

Find √3969: 

The result must have two digits in front of the decimal point.  The last two digits, 69, have 

no significance for the first digit of the root value.  Instead of asking between what squares of 

a full tens column digit does 3969 lie, it is enough to ask:  Between what square numbers does 

39 lie?  What matters is the largest whole number whose square is either less than or equal to 

39.  This is the number 6.  The first digit is 6, and our first approximation is a = 60.  How 

large is the necessary adjustment b? 

The condition for b is: 

(a + b)
2
 = (60 + b)

2
 = 3969 

Through squaring and simplifying we get: 

120b + b
2
 = (120 + b) · b = 369   

This approximation serves to estimate b: 

120b = 369 

From this we see that cannot be greater than 3.  b = 3 leads to: 

(120 + 3) · 3 = 123 · 3 = 369 

So that the condition is fulfilled exactly: 

√3969 = a + b = 63 

Example 4: 

Find √729 

The root must have two digits in front of the decimal point.  The tens column digit must be 

2 because: 

20
2
 < 729 < 30

2
  or rather  2

2
 < 7 < 3

2 

Our first approximation is a = 20.  How large is the necessary adjustment b? 

The condition for b is: 

(a + b)
2
 = (20 + b)

2
 = 729 

By squaring and converting we get: 

(40 + b) · b = 329 

To estimate b we ignore the additive b in parentheses for the moment and we get: 
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40b = 329 

From this we get: 

b = 8 

Here, we must be careful because, in proportion to 20, 8 is not so small that it can easily 

remain unconsidered.  Let us check what value the expression (40 + b) ∙ b has when b = 8.  

We then get: 

(40 + 8) · 8 = 384 > 329 

8 is therefore too large.  So, we now check the next smaller number, 7.  With 7 we get: 

(40 + 7) · 7 = 329 

Now the condition has been fulfilled exactly.  The result is: 

√729 = 27 

This example is intended to show that the estimation through which the b
2
, or the additive 

b in parentheses, is left out, can lead to a b that is too large.  The main thing is to be careful 

when a and b are not very different. 

Up to now the examples have been chosen so that b exactly fulfills the conditions.  In order 

to expand our experience, we will look again at a “well-behaved” example which requires the 

calculation of more than two digits: 

Example 5: 

Find the root value for √18671041. 

The number of digits in front of the decimal point in the result can be determined by 

starting with a units column digit and forming groups of two that are separated by ‘.  That is, 

write √18’67’10’41 and count the number of groups.  The first number group on the left can 

also consist of only 1 digit.  The number of groups equals the number of digits in front of the 

decimal point in the result.  In our example the result has four digits in front of the decimal 

point.  

In this example we will consider principles as well as a rational organization of the 

calculations.   

We prepare to do the actual calculation of √18’67’10’41 by marking the four digits in front 

of the decimal point like this: 

√18’67’10’41 = . . . . 

Just as in the previous example, we find the digit in the first position by finding the largest 

number whose square is less than or equal to the first “number group” (18).  In our example it 

is the number 4, since 4
2
 < 18 < 5

2. 

We now have: 

√18’67’10’41 = 4 . . . 

The first approximation of the root value is a = 4000.  Now, as before, we look for an 

adjustment, b, that adequately fulfills the following condition: 

(a + b)
2
 = (4000 + b)

2
 = 18 67 10 41 

Or, squared and simplified: 

8000 b + b
2
 = (8000 + b) · b = 2 67 10 41 

With the last conversion a2 = 16000000 was already removed from both sides.  We note 
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that until now only the first number group on the left is actually used in the calculation.   

Shortened, we do the subtraction in the following way and ignore the other number groups 

for now: 

18'67 '10 '41 4 . . . ,
16

2


 

From the adjustment term b, we first only require that we gain another digit for the root 

value.  In a certain way, limiting our requirement justifies the rough method of estimation we 

are using.  For the time being, we ignore the b
2
 in 800b + b

2
, or rather, the additive b in its 

converted form of (8000 + b) ∙ b.  We get: 

8000 b = 2671041 or b = 2671041 : 8000 

Since we are only looking to find the digit in the first number column with the quotient, the 

last digits of the calculated difference of 2’67’10’41 do not play a role.  It is: 

b = 2671041 : 8000 = 2671 : 8 = (26 : 8) · 100 = 3 · 100 

The last conversion is done because we are calculating only a single-digit number that we 

automatically write in the hundreds column (second from the left) thereby giving it 100 times 

the value. 

In the short form of algorithms, the calculation has the following form: 

After the subtraction, the next “number group” (67) is “brought down” and written on the 

right next to the difference 2.  The last digit (7) remains unconsidered for now.  One writes 

26’7. 

Now, 26 will be divided by 8, as has been done above in the parentheses.  8 is the doubled 

2a of the first approximation, a, without considering the place value.  (More precisely:  2a is 

8000, but we do not want to deal with the zeros.)  What we get is: 

)!.3(8:7'26

16

,...441'10'67'18

downwrittenyetnotisThis



  

Now, we will go a step further:  After the estimation of  

b  2671041 : 8000  (26 : 8) · 100  3 · 100, 

we must first make sure that b is not too large, and what difference remains between the 

radicand and 

(a + b)
2
 = (4000 + 300)

2
 = 4300

2
. 

With b inserted into  

(8000 + b) · b we get (8000 + 300) · 300 = 8300 · 300 = 2490000 

And, from the previous remainder (2671041) we get the difference 

2671041
 - 2490000

 181041
 

In the short form this calculation becomes the following:  The result of the division (3) is 

written three times; to the right of the result beside the already calculated digit 4, below right 

next to the divisor (8) (The subscript positioning is done so that one can recognize that it has 

been added; this important later when checking the answer, but what is meant if the formation 
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of the number 83; that is, 83= 83, and once again to the right next to the multiplier: 

3

18'67'10'41 = 43 . . . ,
16

26'7 : 8 3
 

While forming 83 we add 

a+ b = 8000 + 300 = 8300 

without carrying bothersome zeros. 

If we do the multiplication and write the result under 267, then we can again quickly 

calculate the difference – as long as it is still of interest at this stage:  Instead of 181041, we 

are happy with the first two digits of 18 that are then expanded to 1810 through the next 

number group (10).   

3

18'67'10'41 = 43 . . . ,
16
26'7 : 8 3
24 9

1 810



 

Now, in principle, the calculation can proceed in the same way.  However, before we do 

that, we want to look back once again and clarify what has been found:  In the first step, from 

our knowledge of square numbers, we calculated the first digit, 4, as the whole number root 

from the left-side number group, 18.  This gave us the first a.  Then we approximated an 

adjustment term b, that improved the a in the second position on the left.  But since this 

adjustment did not yet lead to the exact value, we began the operations from the front, except 

that we started with the improved value of a1 = 4300 instead of a = 4000.  We are trying to 

find the adjustment term b1 so that (a1 + b1) comes close enough to the radicand.   

Again, b1 should provide only one further number column; the third from the left.  Just as b 

in the middle is less than a by a factor of 10, so is b1 less than b.  If we compare (a + b) and 

(a1 + b1), we see that the left summand (a) has increased while the adjusting term (b) has 

decreased.  In this way we continually increase the exactness.  We should determine b1 so that 

(a1 + b1)
2
 = (4300 + b1)

2 
 

comes close enough to 18’67’10’41 but is not greater than this number.  According to 

the binomial formula and our experience up to now, this leads to: 

2a1b1 + b1

2
 = (2  4300 + b1) · b1 = (8600 + b1) · b1 = 181041 

But instead of calculating a1
2 

anew and subtracting it from 18’67’10’41, we can go back to 

the previous calculations because the difference is there already.   

We get the short form of the estimation of b1 in the same way as before:  For right now, we 

will ignore the last digit (0) in 1810, which we will signify with a ‘, and divide by double a1 

(without considering the zeros to the right of the already calculated number columns).  Using 

the same notation as above, we get: 

3

2

18'67 '10 '41 432 . ,
16
26 '7 : 8 3
24 9

1 81'0 : 86 2
1 72 4

8 6






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From this we have now found the number 2 in the third column.  20 is b1.  If we bat this 

over to a1, then we again get the increased value a2 = a1 + b1 = 4320. 

But since there is a remainder we must try and find a further adjustment b2 from a2 that will 

determine the fourth column from the left.  Again, the condition is:  (a2 + b2)
2
 = (4320 + b2)

2
 

and should come as close as possible to the radicand without going over it.   

If (a2 + b2)
2
 = (4320 + b2)

2
 is squared and the condition given that this expression should 

come as close as possible to 18’67’10’41, then during simplification all the subtractions 

already done have accrued and it remains: 

2a2b2 + b2
2
 = b2 · (2a2 + b2) = 8641 

For the estimation we again use: 

b2  2a2  8641 

b2  8641 : 2a2 

2a2 is double the previous results.  If we again ignore the zeros in the columns that have not 

been calculated yet, then, for the moment, we must also leave the last digit (1) of the 

remainder 8641 out of consideration.  The estimation occurs out of: 

b2 = 864’1 : 864 = 1 

The improved value is: 

a3 = a2 + b2 = 4320 + 1 = 4321 

In the algorithm short form this calculation is done as before:  The last number group (41) 

is brought down, written on the right next to the remainder (86), and the last digit (1) is 

separated with a ‘.  Then it is divided by double the existing results 2 · 432 = 864.  The result 

is noted on three number columns and the difference is calculated: 

3

2

1

18'67 '10 '41 4321
16
26 '7 : 8 3
24 9

1 81'0 : 86 2
1 72 4

864 '1 : 864 1
864 1

0









 

The last difference is zero.  With that, the root value was exactly calculated: 

√18671041 = 4321 

To check the answer we square it and get: 

4321
2 

= 18671041 

If we look at the entire process of the calculation, then we see that the main point was to go 

as far as possible with the root extraction using mathematical operations that were as simple 

as possible.  This was successful with the exception of the first step. 

The basis for algorithms forms the binomial formula: 

(a + b)
2
 = a

2
 + 2ab + b

2 
 

It does this by converting the square of a sum into a sum of squares, or rather, products.  The 

conversion of the sequence of operations makes it possible.  The numbers are configured 

differently in relation to the operations.   
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In (a + b), a is always the derived estimation, and b is the adjustment for the next, 

improved approximate value.  There is an increase in a, while b always decreases in relation 

to a, so that leaving b2 unconsidered in the estimation is less and less “dangerous”.   

On the whole, finding the numbers using a denominational number system plays an 

important role, since we calculate to find only one further digit in every “round of 

calculations”.  In principle, the method is not limited to the decimal system, but is relatively 

easy to carry over to other systems.  For practice, and for getting deeper into the subject, this 

can happen in the 9
th

 school year when the denominational number system is studied 

further. (Trans. Note:  the dictionary gave the phrase denominational number system for 

the word Stellenwertsystem.  I’m not convinced that’s the right usage but I can’t think 

of anything else.)   

Example 6:   

In order to really impress this method on our memory we will use it again in another 

example; this time without explanatory remarks.  In the process, at the same time, we will add 

the decimal places in the radicand since the method can be easily expanded to include that.   

This is to be calculated:  147166156,064  

The successive steps for finding the solution are: 

1.  Preparation 

Starting at the decimal point, form two-number groups to the left and right and separate 

them with ‘.  The first group to the left may consist of one or two digits.  On the right, a zero, 

of necessity, will be supplemented so that each group there contains two digits.  We prepare 

for the result by putting the same number of points in front of the decimal point as there are 

radicand number groups to the left of the decimal point. 

1'47 '16'61'56,06'40 . . . . . ,  

2.  First approximation 

We are looking for the largest whole number whose square is less than or equal to the first 

number group (1).  This is the number 1.  It is written in the first number column of the result 

and its square  

(1
2
 = 1) is subtracted from the first number group: 

1'47 '16 '61'56,06 '40 1 . . . . ,
1

0


 

3.  Begin the repetition of calculations 

Now, the next number group is brought down (47) and written next to the remainder (0).  

The last digit (7) is ignored for the time being and is separated by a ‘.  The number in front of 

it (4) will be divided by double the result that is already there (2 · 1 = 2).  The result (2) is 

noted in three places:  on the right next to the existing result, as subscript to the right of the 

divisor, and on the right of the divisor as the multiplier.  The multiplication is done and the 

product on the left is subtracted: 

2

1'47 '16 '61'56,06 '40 12 . . . ,
1
0 4 '7 : 2 2

4 4

3



  
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4.  Repetition of the calculation 

The method is continued until an adequately exact root value is achieved.  If there are no 

more number groups to the right of the decimal point then any amount of pairs of zeros should 

be used to supplement.  This is the calculation: 

2

1

3

1

2

05

1'47 '16 '61'56,06 '40 12 131, 205
1
0 4 '7 : 2 2

4 4

31'6 : 24 1
24 1

7 56 '1 : 242 3
7 26 9

29 25'6 : 2426 1
24 26 1

4 99 50 '6 : 24262 2
4 85 24 4

14 26 24 '000 : 242624 5
12 13 12 025

2 13 11 975















 

5.  Ending the calculations 

In most cases the root can not be completely determined as a decimal fraction.  That means 

that the conversion of the defined number z = √R into a sum, with the help of the root 

operation, can only give an approximate value.  At lower levels this is already apparent 

because even 1/3 can not be converted into a (finite) decimal fraction:  

1/3 = 0.333… 

While here the reason for this is the relationship of the denominator 3 to the base number 

10, actually, the inability to convert the roots has deeper causes; namely how the operations 

correlate with one another.
71

 

However, in principle, the developed method allows for any approximation of the root 

value. With each calculated number column, the accuracy is raised by a power of 10.  So, if 

we have the approximate value of: 

,20,12131064,147166156   

then we know with certainty that the root allows for the following limit: 

12131,20 147166156,064 12131,21.   

The uncertainty amounts to 
1

100
. 

Calculating the next number column: 

205,12131064,147166156   

brings the uncertainty to 
1

1000
 because the root value now allows the limit: 

                                                 
71

 Those who are interested in finding roots in ways other than decimal fractions are directed to the chain 

fractions.  Compare, for example, Louis Locher-Ernst, Arithmetik und Algebra, Page 294. 
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12131,205 147166156,064 12131,206    

and so on. 

When extracting roots from empirical amounts, as with all other calculation methods, one 

must decide how far to calculate the results and still consider it meaningful.  If one were to 

determine something like the diagonal length d of a rectangular board with the side lengths of 

a = 100cm and b = 40cm using the Pythagorean Theorem as: 

2 2100 40 11600d cm cm    

Then, if we calculate the root up to 8 decimal places, the result is meaningless for all 

practical purposes because, among other things, the board’s fluctuation in length caused by 

humidity and temperature changes is much greater than the calculated “exactness”.
72

   

One has to differentiate between the relationship of mathematical concepts (for which no 

imprecise definitions may exist) and the mathematical description of the outer world of 

experience.  As opposed to mathematics, this experiential world, when it has to do with 

measured amounts, basically, must always develop a description that is limited.   

Unless it comes out even, the method of calculating the root must be discontinued after a 

specified number of steps.  In our example we calculated up to three decimal places.  With the 

calculation of the fourth decimal place it can be decided if the third decimal place must be 

rounded up.  We get: 

205812131064147166156 ,,   

The best approximation with three decimal places is: 

147166156,064 12131,206  

If the approximate number is squared, we get: 

12131,206
2
 ≈ 147166159,0. 

This means that when the 8 given places of the root are squared there is a deviation at the 

ninth place of the radicand.   

IV More Examples, Special Cases 

Through the use of a few more examples, we will solidify our expertise with the developed 

method, and, also, make a few remarks about questions that could possibly arise. 

Example 7: 

Calculate √5 up to the fifth decimal place. 

There is a single-digit number group in front of the decimal point (5).  The result also has 

one number place in front of the decimal.  Any amount of pairs of zeros may be brought down 

as needed. 

                                                 
72

 For information on dealing with empirical amounts compare at the place sited page 224 and the following 

pages.  (Trans. Note: This appears to be an incomplete notation)  
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2

3

6

06

5 2,23606
4 : 4 2
10'0
8 4

1 60'0 : 44 3
1 32 9

27 1'0 : 446 6
26 7 96

3 040'00'0 : 4472 6
2 683 23 6

356 76 4










 

The approximate value we have found for √5 is √5 = 2.23606.  It is: 

2,23606
2
  4,99996,  

This means that the deviation first appears in the fifth decimal place.  It is less than 
1

10000
. 

When calculating the fourth decimal place, a zero appears.  In this case we have calculated 

further on the same line by “bringing down” two zeros.  The same thing already happened 

once in the previous example.  Therefore, there appear in the divisor two digits that are 

brought down.  Of course, the zero will not be noted as a factor.  Accordingly, multiple zeros 

also can successively appear.   

Example 8:   

Calculate √10 reliably up to the fifth decimal place.   

1

6

2

2

7

7

10 3,162277
9
10 '0 : 6 1

6 1

3 90 '0 : 62 6
3 75 6

14 40 '0 : 632 2
12 64 4

1 75 60 '0 : 6324 2
1 26 48 4

49 11 60 '0 : 63244 7
44 27 12 9

4 84 47 10 '0 : 632454 7
4 42 71 82 9

41 75 27 1















 

The sixth decimal place is useful to round the fifth place up or down.  The approximate 

value reliable to the fifth decimal place is: 

10 3,16228    

The answer check gives us: 

3,16228
2
 ≈ 10,00001489.  

The square of the approximate value is a good 
1

100000
 too large. 

At the same time, with √10, the approximate root values of all the odd exponents of 10 

have been won.  For example: 



 Booklet VII – Higher Operations VII-29 

 29 

3 2 11000 10 10 10 10 10 31,6227       

Or 

5 4 1100000 10 10 10 100 10 316,227      . 

But also, this applies to 0.1: 

10 1
0,1 10 0,316227

100 10
     

Or 

10 1
0,001 10 0,0316227

10000 10
    . 

Basically, it is enough to find the root value between 1 and 100 because above and below, 

the succeeding digits are repeated.  This is made use of with tables in that one gives the root 

value for a large enough amount of numbers between 1 and 100.  These tables then allow one 

to look up the root value for any number with enough accuracy for practical purposes – just in 

case one does not want to use a calculator. 

Finding Roots is very easy 

If I will a root extract, 

It’s oh so simple, and that’s a fact. 

First I get the root all ready 

By marking the number groups nice and steady. 

During the process I must be deft, 

Start from the decimal, go right and left. 

And very soon I know without question, 

For every group there is a position! 

a is the first that we have named, 

b is the second, and we’ve done the same. 

The a I find as easy as pie, 

by extracting the root in the blink of an eye. 

But only from the very first group, 

For the others, right now, I don’t give a hoot. 

Then I subtract, most accurate and fair, 

Not only the a, but the a as a square. 

I supplement each time all the remainder, 

By bringing on down the very next number. 

To find the b, that is no trouble, 

Just take the remainder and divide by a’s double. 

When b is there for all to see, 

I take away two a’s times b; 

Follow then this advice most rare, 

And be sure to subtract that little b square. 

If a zero appears below the line, 

I am so happy; I’ve done just fine. 

And this I tell you right now and straight out, 

I found the root quickly; of that there’s no doubt. 

Harry Werner 

Translated from German 
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by Nina Kuettel 

 

Practice 61 

1.  Calculate 700740002000100020052 ,,,,,,,  up to five decimal places 

each. 

2.  Calculate √10 from √2 and √5.  Do the same for √14 from √2 and √7, as well as √35 from 

√5 and √7. 

3.  How large is the side of a square whose area is 9216cm
2
? 

4.  A field shaped like a square measures 2ha (Trans. Note: ha stands for hectares) (1ha = 

10,000 m
2
).  How large is the circumference?  (Put no digit after the decimal point!) 

5.  How large is the side of a square that is the same size as two other squares together that 

have side lengths of 10cm and 20cm respectively?  

6.  How large is the hypotenuse of a right triangle whose legs are 208m and 228m? (Calculate 

up to dm exactly!) 

7.  The hypotenuse of a right triangle is 100m and one leg is 40m.  How large is the other leg?  

(Calculate up to two decimal places!) 

8.  A bus drops off a group of hikers at the edge of some woods.  The bus must drive around 

two streets that are at right angles to each other.  The hikers walk on a straight path to their 

new destination.  The bus must first go 2.5km on one street and then 3.7km on the other.  How 

much more distance does the bus travel than the hikers? 

9.  A rectangular grass lawn, where no walking is allowed, has side lengths of 40m and 20m.  

But, some inattentive pedestrians take a short cut diagonally across the lawn.  How many 

meters of walking distance have they spared? 

10.  Measure the sides of an A-4 size sheet of paper and calculate the length of the diagonal.  

Check the answer by re-measuring.   

11.  The bottom of a ladder is standing 2.5m away from a wall.  How high is the ladder in 

order to reach the top of the wall that is 5m high? 

12.  How far from the wall of an 8m-high gable is a 10m-long beam if it reaches just to the tip 

of the gable? 

13.  A 12m-long ladder is set against the wall of a house so that the foot of the ladder is 2.5m 

distant from the wall.  How far above the ground is the top end of the ladder? 

14.  A roof that is 6m high is put on a house that is 14m wide.  What is the minimum length of 

the rafters? 

15.  What is the height of an equilateral triangle if one side is 10cm? 

16.  An object in a balance scale that is not quite exactly balanced weighs 47.5g on one scale 

pan and only 45.7g on the other pan.  What is the true weight of the object?  (Multiply both 

measured weights and find the square root of the product.) 

Solutions: 

1,4142; 2,2361; 14,142; 31,623; 44,721; 63,246; 2,6458; 26,458. 

3,1623; 3,7417; 5,9163  (A more exact value by direct calculation is 5.9161.);  

96cm; 4. 566m; 5. 22,361cm; 6. 308,6m; 7. 91,65m; 8. 1,73km; 9. 15,3m; 10. 36,37cm; 11. 

5,59m; 12. 6m; 13, 11,74m; 14. 9,22m; 15. 8,66cm; 16. 46,6g. 


